Browse/Search Results:  1-10 of 39 Help

Selected(0)Clear Items/Page:    Sort:
An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients: An efficient multigrid solver for two-dimensional SFDEs Journal article
Applied Mathematics and Computation, 2021,Volume: 402
Authors:  Pan,Kejia;  Sun,Hai Wei;  Xu,Yuan;  Xu,Yufeng
Favorite |  | TC[WOS]:3 TC[Scopus]:4 | Submit date:2021/03/09
Biconjugate Gradient Stabilized Method  Cascadic Multigrid Method  Fractional Diffusion Equations  Richardson Extrapolation  Variable Coefficients  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Journal of Applied Mathematics and Computing, 2021,Volume: 66,Issue: 1-2,Page: 673–700
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite |  | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
A three-level finite difference method with preconditioning technique for two-dimensional nonlinear fractional complex Ginzburg–Landau equations Journal article
Journal of Computational and Applied Mathematics, 2021,Volume: 389
Authors:  Zhang,Qifeng;  Zhang,Lu;  Sun,Hai wei
Favorite |  | TC[WOS]:7 TC[Scopus]:7 | Submit date:2021/03/09
Boundedness  Circulant Preconditioner  Crank–nicolson Scheme  Space Fractional Ginzburg–landau Equation  
A spatially sixth-order hybrid L1-CCD method for solving time fractional Schrödinger equations Journal article
Applications of Mathematics, 2021,Volume: 66,Issue: 2,Page: 213–232
Authors:  Zhang,Chun Hua;  Jin,Jun Wei;  Sun,Hai Wei;  Sheng,Qin
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2021/03/09
65m06  65m20  65m60  Hybrid Compact Difference Method  L1 Formula  Linearization  Nonlinear Time Fractional Schrödinger Equations  Unconditional Stability  
Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations Journal article
Numerische Mathematik, 2021,Volume: 147,Issue: 3,Page: 651-677
Authors:  Fang,Zhi Wei;  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations Journal article
Computers and Mathematics with Applications, 2021,Volume: 85,Page: 18-29
Authors:  Pang,Hong Kui;  Qin,Hai Hua;  Sun,Hai Wei;  Ma,Ting Ting
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant-based Preconditioner  Decay Property  Finite Difference Method  Fractional Diffusion Equation  Toeplitz-like  
Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian Journal article
Mathematical Methods in the Applied Sciences, 2021,Volume: 44,Issue: 1,Page: 441-463
Authors:  Gu,Xian Ming;  Sun,Hai Wei;  Zhang,Yanzhi;  Zhao,Yong Liang
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2021/03/09
Caputo Derivative  Circulant Preconditioner  Fractional Diffusion Equations  Integral Fractional Laplacian  Krylov Subspace Solvers  
A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations Journal article
Computers and Mathematics with Applications, 2020,Volume: 80,Issue: 5,Page: 1443-1458
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wang,Hong
Favorite |  | TC[WOS]:14 TC[Scopus]:16 | Submit date:2021/03/09
Fast And Memory-saving Algorithm  Shifted Binary Block Partition  Time-fractional Diffusion Equations  Uniform Polynomial Approximation  Variable-order Caputo Fractional Derivative  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Linear and Multilinear Algebra, 2020
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2021/03/09
Circulant Preconditioner  Distributed-order  Preconditioned Conjugated Gradient Method  Space-fractional Diffusion Equations  
Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations Journal article
Journal of Scientific Computing, 2020,Volume: 83,Issue: 3
Authors:  Zhang,Lu;  Zhang,Qifeng;  Sun,Hai Wei
Favorite |  | TC[WOS]:13 TC[Scopus]:14 | Submit date:2021/03/09
Exponential Runge–kutta Method  Matrix Exponential  Shift-invert Lanczos Method  Space Fractional Ginzburg–landau Equation  Toeplitz Structure