UM

Browse/Search Results:  1-4 of 4 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Improved shuffled frog leaping algorithm-based BP neural network and its application in bearing early fault diagnosis Journal article
Neural Computing and Applications, 2015,Volume: 27,Issue: 2,Page: 375-385
Authors:  Zhuanzhe Zhao;  Qingsong Xu;  Minping Jia
Favorite |  | TC[WOS]:62 TC[Scopus]:74 | Submit date:2018/12/23
Bp Network  Chaotic Operator  Convergence Factor  Fault Diagnosis  Improved Shuffled Frog Leaping Algorithm  Roller Bearing  
ELM Based Representational Learning for Fault Diagnosis of Wind Turbine Equipment Conference paper
Proceedings of ELM-2015, Hangzhou, China, Dec 2015
Authors:  Zhixin Yang;  Xianbo Wang;  Pak Kin Wong;  Jianhua Zhong
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/04/02
Fault Diagnosis  Autoencoder  Wind Turbine  Representational Learning  Classification  Extreme Learning Machines  
A set-valued approach to FDI and FTC of wind turbines Journal article
IEEE Transactions on Control Systems Technology, 2015,Volume: 23,Issue: 1,Page: 245-263
Authors:  Casau P.;  Rosa P.;  Tabatabaeipour S.M.;  Silvestre C.;  Stoustrup J.
Favorite |  | TC[WOS]:27 TC[Scopus]:30 | Submit date:2019/02/12
Fault Detection  Fault Diagnosis  Fault Tolerant Systems  Wind Energy.  
A novel wavelet transform – empirical mode decomposition based sample entropy and SVD approach for acoustic signal fault diagnosis Conference paper
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Beijing, China, 2015
Authors:  Liang J.;  Yang Z.
Favorite |  | TC[WOS]:0 TC[Scopus]:6 | Submit date:2018/12/22
Acoustic Signal  Incipient Fault Diagnosis  Sample Entropy  Singular Value Decomposition  Wavelet Transform- Empirical Mode Decomposition