UM

Browse/Search Results:  1-10 of 10 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Prolate spheroidal wave functions associated with the quaternionic Fourier transform Conference paper
Mathematical Methods in the Applied Sciences
Authors:  Zou C.;  Kou K.I.;  Morais J.
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2019/02/13
bandlimited extrapolation  Mathieu functions  quaternionic analysis  quaternionic Fourier transform  quaternionic signal  the energy concentration problem  
Constructing prolate spheroidal quaternion wave functions on the sphere Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 14,Page: 3961-3978
Authors:  Morais J.;  Kou K.I.
Favorite |  | TC[WOS]:2 TC[Scopus]:2 | Submit date:2019/02/13
30c65  Prolate Spheroidal Wave Functions  Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Functions  Spherical Harmonics  Subclass 30g35  The Energy Concentration Problem  
Uncertainty principles associated with quaternionic linear canonical transforms Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 10,Page: 2722-2736
Authors:  Kou K.I.;  Ou J.;  Morais J.
Favorite |  | TC[WOS]:16 TC[Scopus]:20 | Submit date:2019/02/13
Gaussian Quaternionic Signal  Hypercomplex Functions  Quantum Mechanics  Quaternion Analysis  Quaternionic Fourier Transform  Quaternionic Linear Canonical Transform  Uncertainly Principle  
On 3D orthogonal prolate spheroidal monogenics Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 4,Page: 635-648
Authors:  Morais,J.;  Nguyen,H. M.;  Kou,K. I.
Favorite |  | TC[WOS]:3 TC[Scopus]:7 | Submit date:2021/03/11
Ferrer's associated Legendre functions  hyperbolic functions  prolate spheroidal harmonics  prolate spheroidal monogenics  quaternionic analysis  Riesz system  
On 3D orthogonal prolate spheroidal monogenics Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 4,Page: 635-648
Authors:  Morais J.;  Nguyen H.M.;  Kou K.I.
Favorite |  | TC[WOS]:3 TC[Scopus]:7 | Submit date:2019/02/13
Ferrer's Associated Legendre Functions  Hyperbolic Functions  Prolate Spheroidal Harmonics  Prolate Spheroidal Monogenics  Quaternionic Analysis  Riesz System  
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives Journal article
Mathematical Methods in the Applied Sciences, 2015,Volume: 38,Issue: 13,Page: 2719-2730
Authors:  Liu M.;  Kou K.I.;  Morais J.;  Dang P.
Favorite |  | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Hilbert Transform  Instantaneous Frequency  Short-time Fourier Transform  Signal Moment  
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives Journal article
Mathematical Methods in the Applied Sciences, 2015,Volume: 38,Issue: 13,Page: 2719-2730
Authors:  Liu,M.;  Kou,K. I.;  Morais,J.;  Dang,P.
Favorite |  | TC[WOS]:4 TC[Scopus]:4 | Submit date:2021/03/11
amplitude-phase representation of signal  Hardy-Sobolev space  Hilbert transform  instantaneous frequency  short-time Fourier transform  signal moment  
Generalized holomorphic orthogonal function systems over infinite cylinders Journal article
Mathematical Methods in the Applied Sciences, 2015,Volume: 38,Issue: 12,Page: 2574-2588
Authors:  Morais,J.;  Kou,K. I.;  Le,H. T.
Favorite |  | TC[WOS]:0 TC[Scopus]:2 | Submit date:2021/03/11
Bessel functions  Chebyshev polynomials  cylindrical harmonics  generalized cylindrical holomorphics  hyperbolic functions  quaternionic analysis  
Generalized holomorphic orthogonal function systems over infinite cylinders Journal article
Mathematical Methods in the Applied Sciences, 2015,Volume: 38,Issue: 12,Page: 2574-2588
Authors:  Morais J.;  Kou K.I.;  Le H.T.
Favorite |  | TC[WOS]:0 TC[Scopus]:2 | Submit date:2019/02/13
Bessel Functions  Chebyshev Polynomials  Cylindrical Harmonics  Generalized Cylindrical Holomorphics  Hyperbolic Functions  Quaternionic Analysis  
Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis Journal article
Mathematical Methods in the Applied Sciences, 2013,Volume: 36,Issue: 9,Page: 1028
Authors:  Kou K.;  Morais J.;  Zhang Y.
Favorite |  | TC[WOS]:30 TC[Scopus]:36 | Submit date:2018/10/30
Clifford Analysis  Fourier Transform  Linear Canonical Transform  Offset Linear Canonical Transform  Prolate Spheroidal Wave Functions