Browse/Search Results:  1-8 of 8 Help

Selected(0)Clear Items/Page:    Sort:
Which linear operators preserve outer functions? Journal article
INDAGATIONES MATHEMATICAE-NEW SERIES, 2017,Volume: 28,Issue: 6,Page: 1144-1156
Authors:  Kou, Kit Ian;  Liu, Junming
Favorite |  | TC[WOS]:1 TC[Scopus]:1 | Submit date:2018/10/30
Hardy Space  Outer Function  Weighted Composition Operator  
Extracting outer function part from Hardy space function Journal article
SCIENCE CHINA-MATHEMATICS, 2017,Volume: 60,Issue: 11,Page: 2321-2336
Authors:  Tan LiHui;  Qian Tao
Favorite |  | TC[WOS]:4 TC[Scopus]:5 | Submit date:2018/10/30
Complex Hardy Space  Analytic Signal  Nevanlinna Decomposition  Inner And Outer Functions  Minimum-phase Signal  All-phase Signal  Takenaka-malmquist System  
Signal moments for the short-time Fourier transform associated with Hardy-Sobolev derivatives Journal article
Mathematical Methods in the Applied Sciences, 2015,Volume: 38,Issue: 13,Page: 2719-2730
Authors:  Liu M.;  Kou K.I.;  Morais J.;  Dang P.
Favorite |  | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Hilbert Transform  Instantaneous Frequency  Short-time Fourier Transform  Signal Moment  
Sharper uncertainty principles for the windowed Fourier transform Journal article
Journal of Modern Optics, 2015,Volume: 62,Issue: 1,Page: 46-55
Authors:  Liu M.-S.;  Kou K.I.;  Morais J.;  Dang P.
Favorite |  | TC[WOS]:2 TC[Scopus]:4 | Submit date:2019/02/13
Amplitude-phase Representation Of Signal  Hardy-sobolev Space  Heisenberg's Uncertainty Principle  Instantaneous Frequency  Signal Moment  Windowed Fourier Transform  
Mathematical theory of signal analysis vs. complex analysis method of harmonic analysis Journal article
Applied Mathematics, 2013,Volume: 28,Issue: 4,Page: 505-530
Authors:  Qian T.;  Zhang L.-M.
Favorite |  | TC[WOS]:5 TC[Scopus]:6 | Submit date:2019/02/11
Adaptive Fourier Decomposition  Blaschke Form  Digital Signal Processing  Hardy Space  Higher Dimensional Signal Analysis In Several Complex Variables And The Clifford Algebra settIng  Möbius Transform  Mono-component  Rational Approximation  Rational Orthogonal System  Time-frequency Distribution  Uncertainty Principle  
Sparse Reconstruction of Signals in hardy Spaces Book chapter
出自: Quaternion and Clifford Fourier Transforms and Wavelets:Birkhäuser, Basel, 2013
Authors:  Shuang Li;  Tao Qian
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/06/19
Hardy Space  Compressed Sensing  Analytic Signals  Reproducing Kernels  Sparse Representation  Redundant Dictionary  L1minimization  
Hardy–Sobolev derivatives of phase andamplitude, and their applications Journal article
Mathematical Methods in the Applied Sciences, 2012,Volume: 35,Issue: 17,Page: 2017–2030
Authors:  Pei Dang;  Tao Qian;  Yan Yang
Favorite |  | TC[WOS]:11 TC[Scopus]:12 | Submit date:2019/06/17
Amplitude-phase Representation Of Signal  Derivatives Of Phase Andamplitude  Sobolev Space  Hardy Space  Hilbert Transform  Instantaneous Frequency  
A fast adaptive model reduction method based on Takenaka-Malmquist systems Journal article
Systems and Control Letters, 2012,Volume: 61,Issue: 1,Page: 223
Authors:  Mi W.;  Qian T.;  Wan F.
Favorite |  | TC[WOS]:42 TC[Scopus]:45 | Submit date:2018/10/30
Best Approximation  Impulse Response Energy  Model Order Reduction  Rational Approximation  Takenakamalmquist Basis