UM

Browse/Search Results:  1-10 of 38 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients: An efficient multigrid solver for two-dimensional SFDEs Journal article
Applied Mathematics and Computation, 2021,Volume: 402
Authors:  Pan,Kejia;  Sun,Hai Wei;  Xu,Yuan;  Xu,Yufeng
Favorite |  | TC[WOS]:0 TC[Scopus]:1 | Submit date:2021/03/09
Biconjugate Gradient Stabilized Method  Cascadic Multigrid Method  Fractional Diffusion Equations  Richardson Extrapolation  Variable Coefficients  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Journal of Applied Mathematics and Computing, 2021,Volume: 66,Issue: 1-2,Page: 673–700
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Gmres Method  Riesz Space Fractional Diffusion Equations  Shifted Grünwald Discretization  Sine-transform-based Splitting Preconditioner  Symmetric Positive Definite Toeplitz Matrix  
Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations Journal article
Numerische Mathematik, 2021,Volume: 147,Issue: 3,Page: 651-677
Authors:  Fang,Zhi Wei;  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations Journal article
Computers and Mathematics with Applications, 2021,Volume: 85,Page: 18-29
Authors:  Pang,Hong Kui;  Qin,Hai Hua;  Sun,Hai Wei;  Ma,Ting Ting
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant-based Preconditioner  Decay Property  Finite Difference Method  Fractional Diffusion Equation  Toeplitz-like  
Fast implicit difference schemes for time-space fractional diffusion equations with the integral fractional Laplacian Journal article
Mathematical Methods in the Applied Sciences, 2021,Volume: 44,Issue: 1,Page: 441-463
Authors:  Gu,Xian Ming;  Sun,Hai Wei;  Zhang,Yanzhi;  Zhao,Yong Liang
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2021/03/09
Caputo Derivative  Circulant Preconditioner  Fractional Diffusion Equations  Integral Fractional Laplacian  Krylov Subspace Solvers  
A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations Journal article
Computers and Mathematics with Applications, 2020,Volume: 80,Issue: 5,Page: 1443-1458
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wang,Hong
Favorite |  | TC[WOS]:8 TC[Scopus]:10 | Submit date:2021/03/09
Fast And Memory-saving Algorithm  Shifted Binary Block Partition  Time-fractional Diffusion Equations  Uniform Polynomial Approximation  Variable-order Caputo Fractional Derivative  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Linear and Multilinear Algebra, 2020
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant Preconditioner  Distributed-order  Preconditioned Conjugated Gradient Method  Space-fractional Diffusion Equations  
Numerical solution for multi-dimensional Riesz fractional nonlinear reaction–diffusion equation by exponential Runge–Kutta method Journal article
Journal of Applied Mathematics and Computing, 2020,Volume: 62,Issue: 1-2,Page: 449-472
Authors:  Zhang,Lu;  Sun,Hai Wei
Favorite |  | TC[WOS]:3 TC[Scopus]:3 | Submit date:2021/03/09
Exponential Runge–kutta Method  Matrix Exponential  Riesz Fractional Reaction–diffusion Equation  Shift-invert Lanczos Method  Toeplitz Structure  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Numerical Algorithms, 2019,Volume: 82,Issue: 2,Page: 729-747
Authors:  Zhi-Wei Fang;  Michael K. Ng;  Hai-Wei Sun
Favorite |  | TC[WOS]:5 TC[Scopus]:7 | Submit date:2019/08/09
Fractional Diffusion Equation  Fast Fourier Transform  Krylov Subspace Methods  Toeplitz Matrix  Circulant Preconditioner  
CRANK–NICOLSON ALTERNATIVE DIRECTION IMPLICIT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS WITH NONSEPARABLE COEFFICIENTS Journal article
SIAM Journal on Numerical Analysis, 2019,Volume: 57,Issue: 3,Page: 997-1019
Authors:  XUE-LEI LIN;  MICHAEL K. NG;  HAI-WEI SUN
Favorite |  | TC[WOS]:5 TC[Scopus]:7 | Submit date:2019/06/10
Nonseparable Variable Coefficients  Crank–nicolson Adi Methods  Space-fractional Diffusion Equations  Unconditional Stability Analysis