Selected(0)Clear
Items/Page: Sort: |
| The Power of Bounds: Answering Approximate Earth Mover's Distance with Parametric Bounds Journal article IEEE Transactions on Knowledge and Data Engineering, 2021,Volume: 33,Issue: 2,Page: 768-781 Authors: Chan,Tsz Nam; Yiu,Man Lung; Leong Hou,U.
 Favorite | | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/11 approximation framework Earth mover's distance parametric bounds |
| A fast method for variable-order Caputo fractional derivative with applications to time-fractional diffusion equations Journal article Computers and Mathematics with Applications, 2020,Volume: 80,Issue: 5,Page: 1443-1458 Authors: Fang,Zhi Wei; Sun,Hai Wei; Wang,Hong
 Favorite | | TC[WOS]:3 TC[Scopus]:5 | Submit date:2021/03/09 Fast and memory-saving algorithm Shifted binary block partition Time-fractional diffusion equations Uniform polynomial approximation Variable-order Caputo fractional derivative |
| Edgeworth corrections for spot volatility estimator Journal article Statistics and Probability Letters, 2020,Volume: 164 Authors: He,Lidan; Liu,Qiang; Liu,Zhi
 Favorite | | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/11 Central limit theorem Confidence interval Edgeworth expansion High frequency data Spot volatility |
| Approximate empirical kernel map-based iterative extreme learning machine for clustering Journal article Neural Computing and Applications, 2020,Volume: 32,Issue: 12,Page: 8031-8046 Authors: Chen,Chuangquan; Vong,Chi Man; Wong,Pak Kin; Tai,Keng Iam
 Favorite | | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09 Approximate empirical kernel map Compact model Extreme learning machine Kernel learning Maximum margin clustering |
| Exponential Runge–Kutta Method for Two-Dimensional Nonlinear Fractional Complex Ginzburg–Landau Equations Journal article Journal of Scientific Computing, 2020,Volume: 83,Issue: 3 Authors: Zhang,Lu; Zhang,Qifeng; Sun,Hai Wei
 Favorite | | TC[WOS]:3 TC[Scopus]:3 | Submit date:2021/03/09 Exponential Runge–Kutta method Matrix exponential Shift-invert Lanczos method Space fractional Ginzburg–Landau equation Toeplitz structure |
| On semiclassical orthogonal polynomials associated with a Freud-type weixght Journal article Mathematical Methods in the Applied Sciences, 2020,Volume: 43,Issue: 8,Page: 5295-5313 Authors: Wang,Dan; Zhu,Mengkun; Chen,Yang
 Favorite | | TC[WOS]:2 TC[Scopus]:1 | Submit date:2021/03/09 asymptotics bounds Freud-type weight orthogonal polynomials semiclassical |
| A nonuniform L2 formula of Caputo derivative and its application to a fractional Benjamin–Bona–Mahony-type equation with nonsmooth solutions Journal article Numerical Methods for Partial Differential Equations, 2020,Volume: 36,Issue: 3,Page: 579-600 Authors: Lyu,Pin; Vong,Seakweng
 Favorite | | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/09 Caputo derivative finite difference scheme fractional BBM-type equation nonuniform time grid unconditional convergence |
| A 76.6-dB-SNDR 50-MHz-BW 29.2-mW Multi-Bit CT Sturdy MASH with DAC Non-Linearity Tolerance Journal article IEEE Journal of Solid-State Circuits, 2020,Volume: 55,Issue: 2,Page: 344-355 Authors: Qi,Liang; Jain,Ankesh; Jiang,Dongyang; Sin,Sai Weng; Martins,Rui P.; Ortmanns,Maurits
 Favorite | | TC[WOS]:3 TC[Scopus]:4 | Submit date:2021/03/09 Analog-to-digital converter (ADC) continuous time (CT) digital-to-analog converter (DAC) linearization excess loop delay (ELD) compensation filter finite-impulse response (FIR) multibit quantization noise coupling (NC) sturdy multistage noise-shaping (SMASH) successive-approximation register (SAR) |
| A 12.5-MHz Bandwidth 77-dB SNDR SAR-Assisted Noise Shaping Pipeline ADC Journal article IEEE Journal of Solid-State Circuits, 2020,Volume: 55,Issue: 2,Page: 312-321 Authors: Song,Yan; Chan,Chi Hang; Zhu,Yan; Martins,Rui P.
 Favorite | | TC[WOS]:4 TC[Scopus]:4 | Submit date:2021/03/09 Alternative loading capacitor (ALC) analog-to-digital converter (ADC) multiplying digital-to-analog converter (MDAC) reusing noise shaping (NS) successive approximation register (SAR)-assisted pipeline |
| A 5 GS/s 29 mW Interleaved SAR ADC with 48.5 dB SNDR Using Digital-Mixing Background Timing-Skew Calibration for Direct Sampling Applications Journal article IEEE Access, 2020,Volume: 8,Page: 138944-138954 Authors: Guo,Mingqiang; Mao,Jiaji; Sin,Sai Weng; Wei,Hegong; Martins,Rui P.
 Favorite | | TC[WOS]:0 TC[Scopus]:1 | Submit date:2021/03/09 Analog-to-digital converter (ADC) digital background calibration digital-mixing time-interleaved (TI) ADC timing mismatch |