UM

Browse/Search Results:  1-10 of 44 Help

Selected(0)Clear Items/Page:    Sort:
HGHA: task allocation and path planning for warehouse agents Journal article
Assembly Automation, 2021
Authors:  Liu,Yandong;  Han,Dong;  Wang,Lujia;  Xu,Cheng Zhong
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Hierarchical Genetic Highways Algorithm  Multi-agent  Path planning  Task allocation  
Multi-agent Reinforcement Learning for Green Energy Powered IoT Networks with Random Access Conference paper
IEEE Vehicular Technology Conference
Authors:  Han,Mengqi;  Del Castillo,Luis Arocas;  Khairy,Sami;  Chen,Xuehan;  Cai,Lin X.;  Lin,Bin;  Hou,Fen
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/11
adaptive random access  and energy harvesting  IoT network  multi-agent reinforcement learning  
Online optimal consensus control of unknown linear multi-agent systems via time-based adaptive dynamic programming Journal article
Neurocomputing, 2020,Volume: 404,Page: 137-144
Authors:  Liu,Yifan;  Li,Tieshan;  Shan,Qihe;  Yu,Renhai;  Wu,Yue;  Chen,C. L.Philip
Favorite |  | TC[WOS]:1 TC[Scopus]:3 | Submit date:2021/03/09
Adaptive dynamic programming (ADP)  Consensus control  Discrete-time (DT) system  Linear multi-agent systems (MASs)  
A rendezvous algorithm for multi-agent systems in disconnected network topologies Conference paper
2020 28th Mediterranean Conference on Control and Automation, MED 2020, Saint-Raphaël, France, 15-18 Sept. 2020
Authors:  Rafael Ribeiro;  Daniel Silvestre;  Carlos Silvestre
Favorite |  | TC[WOS]:3 TC[Scopus]:1 | Submit date:2021/03/09
Agents-based Systems  Cooperative Control  Distributed Control  
Optimized Multi-Agent Formation Control Based on an Identifier-Actor--Critic Reinforcement Learning Algorithm Journal article
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018,Volume: 26,Issue: 5,Page: 2719-2731
Authors:  Wen, Guoxing;  Chen, C. L. Philip;  Feng, Jun;  Zhou, Ning
View | Adobe PDF | Favorite |  | TC[WOS]:28 TC[Scopus]:31 | Submit date:2018/10/30
Fuzzy logic systems (FLSs)  identifier-actor-critic architecture  multi-agent formation  optimized formation control  reinforcement learning (RL)  
Optimized Multi-Agent Formation Control Based on an Identifier-Actor-Critic Reinforcement Learning Algorithm Journal article
IEEE Transactions on Fuzzy Systems, 2018,Volume: 26,Issue: 5,Page: 2719-2731
Authors:  Wen G.;  Chen C.L.P.;  Feng J.;  Zhou N.
Favorite |  | TC[WOS]:28 TC[Scopus]:31 | Submit date:2019/02/11
Fuzzy logic systems (FLSs)  identifier-actor-critic architecture  multi-agent formation  optimized formation control  reinforcement learning (RL)  
A novel Ca2+ current blocker promotes angiogenesis and cardiac healing after experimental myocardial infarction in mice Journal article
PHARMACOLOGICAL RESEARCH, 2018,Volume: 134,Page: 109-117
Authors:  Cui, Guozhen;  Xin, Qiqi;  Tseng, Hisa Hui Ling;  Hoi, Maggie PuiMan;  Wang, Yan;  Yang, Binrui;  Choi, InLeng;  Wang, Yuqiang;  Yuan, Rong;  Chen, Keji;  Cong, Weihong;  Lee, Simon MingYuen
View | Adobe PDF | Favorite |  | TC[WOS]:6 TC[Scopus]:5 | Submit date:2018/10/30
Cardioprotection  Angiogenesis  ADTM  Zebrafish  VEGF  
Fast identification of anticancer constituents in Forsythiae Fructus based on metabolomics approaches Journal article
JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS, 2018,Volume: 154,Page: 312-320
Authors:  Bao, Jiaolin;  Ding, Ren-Bo;  Jia, Xuejing;  Liang, Yeer;  Liu, Fang;  Wang, Kai;  Zhang, Chao;  Li, Peng;  Wang, Yitao;  Wan, Jian-Bo;  He, Chengwei
View | Adobe PDF | Favorite |  | TC[WOS]:4 TC[Scopus]:4 | Submit date:2018/10/30
Forsythiae Fructus  Anticancer  Metabolomics  Multivariate Data Analysis  B16-f10 Melanoma  
Adaptive Consensus of Nonlinear Multi-Agent Systems With Non-Identical Partially Unknown Control Directions and Bounded Modelling Errors Journal article
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017,Volume: 62,Issue: 9,Page: 4654-4659
Authors:  Chen, Ci;  Wen, Changyun;  Liu, Zhi;  Xie, Kan;  Zhang, Yun;  Chen, C. L. Philip
Favorite |  | TC[WOS]:110 TC[Scopus]:111 | Submit date:2018/10/30
Adaptive consensus  multi-agent system  non-identical control directions  partially unknown  
Adaptive Consensus of Nonlinear Multi-Agent Systems with Non-Identical Partially Unknown Control Directions and Bounded Modelling Errors Journal article
IEEE Transactions on Automatic Control, 2017,Volume: 62,Issue: 9,Page: 4654-4659
Authors:  Chen C.;  Wen C.;  Liu Z.;  Xie K.;  Zhang Y.;  Chen C.L.P.
Favorite |  | TC[WOS]:110 TC[Scopus]:111 | Submit date:2019/02/11
Adaptive consensus  multi-agent system  non-identical control directions  partially unknown