UM

Browse/Search Results:  1-10 of 12 Help

Selected(0)Clear Items/Page:    Sort:
Spatial Filtering in SSVEP-Based BCIs: Unified Framework and New Improvements Journal article
IEEE Transactions on Biomedical Engineering, 2020,Volume: 67,Issue: 11,Page: 3057-3072
Authors:  Wong,Chi Man;  Wang,Boyu;  Wang,Ze;  Lao,Ka Fai;  Rosa,Agostinho;  Wan,Feng
Favorite |  | TC[WOS]:10 TC[Scopus]:12 | Submit date:2021/03/11
generalized eigenvalue problem  spatial filter  SSVEP-based BCI  unified framework  
A Riemannian Optimization Approach for Solving the Generalized Eigenvalue Problem for Nonsquare Matrix Pencils Journal article
Journal of Scientific Computing, 2020,Volume: 82,Issue: 3
Authors:  Li,Jiao fen;  Li,Wen;  Vong,Seak Weng;  Luo,Qi Lun;  Xiao,Ming Qing
Favorite |  | TC[WOS]:0 TC[Scopus]:2 | Submit date:2021/03/09
Generalized eigenvalue  Nonsquare pencils  Riemannian optimization  Stiefel manifold  
Noda iterations for generalized eigenproblems following Perron-Frobenius theory Journal article
Numerical Algorithms, 2019,Volume: 80,Issue: 3,Page: 937-955
Authors:  Chen,Xiao Shan;  Vong,Seak Weng;  Li,Wen;  Xu,Hongguo
Favorite |  | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/09
Generalized eigenproblem  Generalized Noda iteration  M-matrix  Nonnegative irreducible matrix  Perron-Frobenius theory  Quadratic convergence  
Noda iterations for generalized eigenproblems following Perron-Frobenius theory Journal article
Numerical Algorithms, 2019,Volume: 80,Issue: 3,Page: 937–955
Authors:  Xiao Shan Chen;  Seak-Weng Vong;  Wen Li;  Hongguo Xu
Favorite |  | TC[WOS]:0 TC[Scopus]:1 | Submit date:2019/03/22
Generalized Eigenproblem  Generalized Noda Iteration  Nonnegative Irreducible Matrix  M-matrix  Quadratic Convergence  Perron-frobenius Theory  
Optimized Multi-Agent Formation Control Based on an Identifier-Actor--Critic Reinforcement Learning Algorithm Journal article
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2018,Volume: 26,Issue: 5,Page: 2719-2731
Authors:  Wen, Guoxing;  Chen, C. L. Philip;  Feng, Jun;  Zhou, Ning
View | Adobe PDF | Favorite |  | TC[WOS]:29 TC[Scopus]:31 | Submit date:2018/10/30
Fuzzy logic systems (FLSs)  identifier-actor-critic architecture  multi-agent formation  optimized formation control  reinforcement learning (RL)  
An Ulm-like cayley transform method for inverse eigenvalue problems with multiple eigenvalues Journal article
Numerical Mathematics, 2016,Volume: 9,Issue: 4,Page: 664-685
Authors:  Shen W.;  Li C.;  Jin X.
Favorite |  | TC[WOS]:4 TC[Scopus]:4 | Submit date:2019/02/11
Inverse Eigenvalue Problem  Nonlinear Equation  Ulm-like Method  
An inexact Cayley transform method for inverse eigenvalue problems with multiple eigenvalues Journal article
Inverse Problems, 2015,Volume: 31,Issue: 8
Authors:  Shen W.P.;  Li C.;  Jin X.Q.
Favorite |  | TC[WOS]:13 TC[Scopus]:13 | Submit date:2019/02/11
Inexact Cayley Transform Method  Inverse Eigenvalue Problem  Nonlinear Equation  
Free vibration analysis of two-dimensional functionally graded structures by a meshfree boundary-domain integral equation method Journal article
Composite Structures, 2014,Volume: 110,Issue: 1,Page: 342-353
Authors:  Yang Y.;  Kou K.P.;  Iu V.P.;  Lam C.C.;  Zhang C.
Favorite |  | TC[WOS]:24 TC[Scopus]:24 | Submit date:2019/02/12
Boundary Element Method  Boundary-domain Integral Equations  Free Vibration  Functionally Graded Structures  Meshfree Method  
Free vibration analysis of 2D FG plates by a meshfree boundary-domain integral equation method Conference paper
proceedings of 5th Asia Pacific Congress on Computational Mechanics & the 3rd International Symposium on Computational Mechanics, Singapore, Des. 11-14, 2013
Authors:  Y. Yang;  K.P. Kou;  V.P. Iu;  C.C. Lam;  Ch. Zhang
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2019/05/17
Free Vibration  Exponential Material Gradation  Boundary Element Method  Meshfree Method  Boundary-domain Integral Equations  Functionally Graded Plates  
Numerical solution of the kohn-sham equation by finite element methods with an adaptive mesh redistribution technique Journal article
Journal of Scientific Computing, 2013,Volume: 55,Issue: 2,Page: 372-391
Authors:  Bao G.;  Hu G.;  Liu D.
Favorite |  | TC[WOS]:14 TC[Scopus]:14 | Submit date:2019/02/13
Adaptive Mesh Redistribution  Density Functional Theory  Finite Element Method  Harmonic Map  Kohn-sham Equation