UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
Deep Fuzzy Clustering-A Representation Learning Approach Journal article
IEEE Transactions on Fuzzy Systems, 2020,Volume: 28,Issue: 7,Page: 1420-1433
Authors:  Feng,Qiying;  Chen,Long;  Philip Chen,C. L.;  Guo,Li
Favorite |  | TC[WOS]:1 TC[Scopus]:2 | Submit date:2021/03/09
Deep learning  discriminative graph  fuzzy c-means (FCM)  fuzzy compactness and separation (FCS)  pseudolabel  
Recurrent Broad Learning Systems for Time Series Prediction Journal article
IEEE Transactions on Cybernetics, 2020,Volume: 50,Issue: 4,Page: 1405-1417
Authors:  Xu,Meiling;  Han,Min;  Chen,C. L.Philip;  Qiu,Tie
Favorite |  | TC[WOS]:35 TC[Scopus]:30 | Submit date:2021/03/09
Broad learning systems (BLSs)  neural networks (NNs)  prediction  time series  
Unsupervised Learning of 3-D Local Features From Raw Voxels Based on a Novel Permutation Voxelization Strategy Journal article
IEEE Transactions on Cybernetics, 2019,Volume: 49,Issue: 2,Page: 481-494
Authors:  Han Z.;  Liu Z.;  Han J.;  Vong C.-M.;  Bu S.;  Chen C.L.P.
Favorite |  | TC[WOS]:0 TC[Scopus]:18 | Submit date:2019/02/11
3-D local features  3-D voxelization  deep learning  stacked sparse autoencoder (SSAE)  unsupervised feature learning  
Unsupervised Learning 3D Local Feature from Raw Voxels based on A Novel Permutation Voxelization Strategy Journal article
IEEE TRANSACTIONS ON CYBERNETIC, 2019,Volume: 49,Issue: 2,Page: 481 - 494
Authors:  Zhizhong Han;  Zhenbao Liu;  Junwei Han;  Chi-Man Vong;  Shuhui Bu;  C. L. Philip Chen
Favorite |  | TC[WOS]:16 TC[Scopus]:0 | Submit date:2019/04/29
3-d Local Features  3-d Voxelization  Deep Learning  Stacked Sparse Autoencoder (Ssae)  Unsupervised Feature Learning  
Wavelet-based extended morphological profile and deep autoencoder for hyperspectral image classification Journal article
INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018,Volume: 16,Issue: 3
Authors:  Luo, Huiwu;  Tani, Yuan Yan;  Biuk-Aghai, Robert P.;  Yang, Xu;  Yang, Lina;  Wang, Yi
Favorite |  | TC[WOS]:3 TC[Scopus]:4 | Submit date:2018/10/30
Wavelet transform  deep autoencoder  neuronal network  mathematical morphology  feature extraction  
Exploiting rich feature representation for SMT N-best reranking Conference paper
International Conference on Wavelet Analysis and Pattern Recognition
Authors:  Tong,Yu;  Wong,Derek F.;  Chao,Lidia S.
Favorite |  | TC[WOS]:0 TC[Scopus]:1 | Submit date:2021/03/11
Deep Neural Networks  N-best Reranking  Semantic Features  Syntactic Features  
Representational learning for fault diagnosis of wind turbine equipment: A multi-layered extreme learning machines approach Journal article
Energies, 2016,Volume: 9,Issue: 6
Authors:  Yang Z.-X.;  Wang X.-B.;  Zhong J.-H.
Favorite |  | TC[WOS]:38 TC[Scopus]:57 | Submit date:2018/12/22
Autoencoder (Ae)  Classification  Extreme Learning Machines (Elm)  Fault Diagnosis  Wind Turbine  
Optimize real-valued RBM with Bidirectional Autoencoder Conference paper
iFUZZY 2015 - 2015 International Conference on Fuzzy Theory and Its Applications, Conference Digest, Yilan, TAIWAN, NOV 18-20, 2015
Authors:  Feng Q.;  Chen L.;  Chen C.L.P.
Favorite |  | TC[WOS]:1 TC[Scopus]:0 | Submit date:2019/02/11
Back Propagation  Bidirectional Autoencoder  Rbm Optimization  Sgd  
Exploiting Rich Feature Representation for SMT N-Best Reranking Conference paper
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), Jeju, SOUTH KOREA, JUL 10-13, 2016
Authors:  Tong, Yu;  Derek F. Wong;  Lidia S. Chao
Favorite |  | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/04/25
N-best Reranking  Syntactic Features  Semantic Features  Deep Neural Networks  
Single Sample Face Recognition via Learning Deep Supervised Autoencoders Journal article
IEEE Transactions on Information Forensics and Security, 2015,Volume: 10,Issue: 10,Page: 2108
Authors:  Gao S.;  Zhang Y.;  Jia K.;  Lu J.;  Zhang Y.
Favorite |  | TC[WOS]:117 TC[Scopus]:143 | Submit date:2018/10/30
Deep architecture  Face recognition  Single training sample per person  Supervised Auto-encoder