UM

Browse/Search Results:  1-10 of 15 Help

Selected(0)Clear Items/Page:    Sort:
Circulant-based approximate inverse preconditioners for a class of fractional diffusion equations Journal article
Computers and Mathematics with Applications, 2021,Volume: 85,Page: 18-29
Authors:  Pang,Hong Kui;  Qin,Hai Hua;  Sun,Hai Wei;  Ma,Ting Ting
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Circulant-based preconditioner  Decay property  Finite difference method  Fractional diffusion equation  Toeplitz-like  
Splitting preconditioning based on sine transform for time-dependent Riesz space fractional diffusion equations Journal article
Journal of Applied Mathematics and Computing, 2020
Authors:  Lu,Xin;  Fang,Zhi Wei;  Sun,Hai Wei
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
GMRES method  Riesz space fractional diffusion equations  Shifted Grünwald discretization  Sine-transform-based splitting preconditioner  Symmetric positive definite Toeplitz matrix  
An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients Journal article
International Journal of Computer Mathematics, 2019
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wei,Hui Qin
Favorite |  | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/05/27
Approximate Inverse  Circulant Matrix  Fast Fourier Transform  Fractional Diffusion Equation  Krylov Subspace Methods  Piecewise Continuous Coefficients  Toeplitz Matrix  
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations Conference paper
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, Univ Macau, Macau, PEOPLES R CHINA, MAY 20-22, 2017
Authors:  Lin, Xuelei;  Ng, Michael K.;  Sun, Haiwei
Favorite |  | TC[WOS]:10 TC[Scopus]:9 | Submit date:2018/10/30
Block Lower Triangular  Toeplitz-like Matrix  Diagonalization  Separable  Block Is An Element of-circulAnt Preconditioner  Time-space Fractional Diffusion Equations  
A separable preconditioner for time-space fractional Caputo-Riesz diffusion equations Journal article
Numerical Mathematics, 2018,Volume: 11,Issue: 4,Page: 827-853
Authors:  Lin,Xuelei;  Ng,Michael K.;  Sun,Haiwei
Favorite |  | TC[WOS]:10 TC[Scopus]:9 | Submit date:2021/03/09
Block lower triangular  Block ε-circulant preconditioner  Diagonalization  Separable  Time-space fractional diffusion equations  Toeplitz-like matrix  
Circulant preconditioners for a kind of spatial fractional diffusion equations Journal article
Numerical Algorithms, 2018
Authors:  Zhi-Wei Fang;  Michael K. Ng;  ·Hai-Wei Sun
Favorite |  | TC[WOS]:0 TC[Scopus]:7 | Submit date:2019/08/09
Fractional Diffusion Equation  Fast Fourier Transform  Krylov Subspace Methods  Toeplitz Matrix  Circulant Preconditioner  
A fast preconditioned policy iteration method for solving the tempered fractional HJB equation governing American options valuation Journal article
Computers and Mathematics with Applications, 2017,Volume: 73,Issue: 9,Page: 1932-1944
Authors:  Xu Chen;  Wenfei Wang;  Deng Ding;  Siu-Long Lei
Favorite |  | TC[WOS]:9 TC[Scopus]:9 | Submit date:2019/05/22
American Options  Hamilton–jacobi–bellman Equation  Preconditioner  Tempered Fractional Derivative  Unconditional Stability  
Preconditioned iterative methods for space-time fractional advection-diffusion equations Journal article
Journal of Computational Physics, 2016,Volume: 319,Page: 266-279
Authors:  Zhao Z.;  Jin X.-Q.;  Lin M.M.
Favorite |  | TC[WOS]:18 TC[Scopus]:18 | Submit date:2019/02/11
Conjugate Gradient Normal Residual Method  Fast Fourier Transform  Fractional Diffusion Equations  Generalized Minimal Residual Method  Preconditioner  Toeplitz Matrix  
Superoptimal preconditioners for functions of matrices Journal article
Numerical Mathematics, 2015,Volume: 8,Issue: 4,Page: 515-529
Authors:  Bai Z.-J.;  Jin X.-Q.;  Yao T.-T.
Favorite |  | TC[WOS]:2 TC[Scopus]:2 | Submit date:2019/02/11
Functions Of Matrices  Pcg Method  Superoptimal Preconditioners  Toeplitz Matrix  
Fast numerical solution for fractional diffusion equations by exponential quadrature rule Journal article
Journal of Computational Physics, 2015,Volume: 299,Page: 130-143
Authors:  Zhang,Lu;  Sun,Hai Wei;  Pang,Hong Kui
Favorite |  | TC[WOS]:20 TC[Scopus]:19 | Submit date:2019/05/27
Exponential Quadrature Rule  Fractional Diffusion Equation  Matrix Exponential  Preconditioned Gmres  Shift-invert Arnoldi  Toeplitz-like Structure