Selected(0)Clear
Items/Page: Sort: |
| A linearized and second-order unconditionally convergent scheme for coupled time fractional Klein-Gordon-Schrödinger equation Journal article Numerical Methods for Partial Differential Equations, 2018,Volume: 34,Issue: 6,Page: 2153-2179 Authors: Lyu P.; Vong S.
 Favorite | | TC[WOS]:5 TC[Scopus]:5 | Submit date:2018/12/24 Fractional Klein-gordon-schrödinger Equations Linearized Scheme Second-order Convergent Unconditionally Convergent And Stable |
| An adaptive FEM with ITP approach for steady Schrödinger equation Journal article International Journal of Computer Mathematics, 2018,Volume: 95,Issue: 1,Page: 187-201 Authors: Kuang Y.; Hu G.
 Favorite | | TC[WOS]:3 TC[Scopus]:3 | Submit date:2019/02/13 finite element method ground state imaginary time propagation moving mesh method Schrödinger equation |
| Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation Journal article International Journal of Bifurcation and Chaos, 2016,Volume: 26,Issue: 6 Authors: Kou K. ; Li J.
 Favorite | | TC[WOS]:1 TC[Scopus]:1 | Submit date:2019/02/13 Bifurcation Compacton Modified Nonlinear Schrödinger Equation Peakon Periodic Peakon Periodic Wave Solitary Wave |
| Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrödinger Equation Journal article International Journal of Bifurcation and Chaos, 2016,Volume: 26,Issue: 6 Authors: Kou,Kitian; Li,Jibin
 Favorite | | TC[WOS]:1 TC[Scopus]:1 | Submit date:2021/03/11 bifurcation compacton modified nonlinear Schrödinger equation peakon periodic peakon periodic wave Solitary wave |
| On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article Numerical Methods for Partial Differential Equations, 2013,Volume: 29,Issue: 2,Page: 693-705 Authors: Vong S.-W. ; Meng Q.-J.; Lei S.-L.
 Favorite | | TC[WOS]:2 TC[Scopus]:2 | Submit date:2018/12/24 Conserved Quantity Nonlinear Schrödinger Equation Orthogonal Spline Collocation Method Wave Operator |
| On a discrete-time collocation method for the nonlinear Schrödinger equation with wave operator Journal article Numerical Methods for Partial Differential Equations, 2013,Volume: 29,Issue: 2,Page: 693-705 Authors: Vong,Seak Weng; Meng,Qing Jiang; Lei,Siu Long
 Favorite | | TC[WOS]:2 TC[Scopus]:2 | Submit date:2021/03/09 conserved quantity nonlinear Schrödinger equation orthogonal spline collocation method wave operator |