UM

Browse/Search Results:  1-10 of 67 Help

Selected(0)Clear Items/Page:    Sort:
An efficient multigrid solver for two-dimensional spatial fractional diffusion equations with variable coefficients: An efficient multigrid solver for two-dimensional SFDEs Journal article
Applied Mathematics and Computation, 2021,Volume: 402
Authors:  Pan,Kejia;  Sun,Hai Wei;  Xu,Yuan;  Xu,Yufeng
Favorite |  | TC[WOS]:3 TC[Scopus]:3 | Submit date:2021/03/09
Biconjugate Gradient Stabilized Method  Cascadic Multigrid Method  Fractional Diffusion Equations  Richardson Extrapolation  Variable Coefficients  
Preconditioning for symmetric positive definite systems in balanced fractional diffusion equations Journal article
Numerische Mathematik, 2021,Volume: 147,Issue: 3,Page: 651-677
Authors:  Fang,Zhi Wei;  Lin,Xue Lei;  Ng,Michael K.;  Sun,Hai Wei
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
CRL: Collaborative Representation Learning by Coordinating Topic Modeling and Network Embeddings Journal article
IEEE Transactions on Neural Networks and Learning Systems, 2021,Page: 1-13
Authors:  Junyang Chen;  Zhiguo Gong;  Wei Wang;  Weiwen Liu;  Xiao Dong
Favorite |  | TC[WOS]:0 TC[Scopus]:0 | Submit date:2021/03/09
Collaboration  Collaborative Representation Learning (Crl)  Context Modeling  Correlation  Data Models  Electronic Mail  Global And Local Contexts  Learning Systems  Network Embeddings  Network Representation Learning (Nrl)  Network Topology  Topic Modeling.  
A circulant preconditioner for the Riesz distributed-order space-fractional diffusion equations Journal article
Linear and Multilinear Algebra, 2020
Authors:  Huang,Xin;  Fang,Zhi Wei;  Sun,Hai Wei;  Zhang,Chun Hua
Favorite |  | TC[WOS]:0 TC[Scopus]:2 | Submit date:2021/03/09
Circulant Preconditioner  Distributed-order  Preconditioned Conjugated Gradient Method  Space-fractional Diffusion Equations  
A geometric Gauss–Newton method for least squares inverse eigenvalue problems Journal article
BIT Numerical Mathematics, 2020,Volume: 60,Issue: 3,Page: 825-852
Authors:  Yao,Teng Teng;  Bai,Zheng Jian;  Jin,Xiao Qing;  Zhao,Zhi
Favorite |  | TC[WOS]:2 TC[Scopus]:3 | Submit date:2021/03/09
Geometric Gauss–Newton method  Parameterized least squares inverse eigenvalue problem  Preconditioner  
Recurrent Broad Learning Systems for Time Series Prediction Journal article
IEEE Transactions on Cybernetics, 2020,Volume: 50,Issue: 4,Page: 1405-1417
Authors:  Xu,Meiling;  Han,Min;  Chen,C. L.Philip;  Qiu,Tie
Favorite |  | TC[WOS]:50 TC[Scopus]:48 | Submit date:2021/03/09
Broad learning systems (BLSs)  neural networks (NNs)  prediction  time series  
A Riemannian Optimization Approach for Solving the Generalized Eigenvalue Problem for Nonsquare Matrix Pencils Journal article
Journal of Scientific Computing, 2020,Volume: 82,Issue: 3
Authors:  Li,Jiao fen;  Li,Wen;  Vong,Seak Weng;  Luo,Qi Lun;  Xiao,Ming Qing
Favorite |  | TC[WOS]:0 TC[Scopus]:3 | Submit date:2021/03/09
Generalized eigenvalue  Nonsquare pencils  Riemannian optimization  Stiefel manifold  
Speeding up SimRank computations by polynomial preconditioners Journal article
Applied Numerical Mathematics, 2020,Volume: 153,Page: 147-163
Authors:  Sio Wan Ng;  Siu-Long Lei;  Juan Lu;  Zhiguo Gong
Favorite |  | TC[WOS]:0 TC[Scopus]:1 | Submit date:2021/03/09
Graph  Linear System  Matrix  Polynomial Preconditioner  Simrank  
Downregulation of Cyclin B1 mediates nagilactone E-induced G2 phase cell cycle arrest in non-small cell lung cancer cells Journal article
EUROPEAN JOURNAL OF PHARMACOLOGY, 2018,Volume: 830,Page: 17-25
Authors:  Zhang, Le-Le;  Feng, Zhe-Ling;  Su, Min-Xia;  Jiang, Xiao-Ming;  Chen, Xiuping;  Wang, Yitao;  Li, Ao;  Lin, Li-Gen;  Lu, Jin-Jian
View | Adobe PDF | Favorite |  | TC[WOS]:23 TC[Scopus]:21 | Submit date:2018/10/30
Nagilactone e  Non-small Cell Lung Cancer  Cyclin B1  Cell Cycle  Apoptosis  
A Riemannian inexact Newton-CG method for constructing nonnegative matrix with prescribed realizable spectrum Journal article
Numerische Mathematik, 2018
Authors:  Zhi Zhao;  Zheng-Jian Bai;  Xiao-Qing Jin
Favorite |  | TC[WOS]:5 TC[Scopus]:5 | Submit date:2019/07/30
Inverse Eigenvalue Problems  Algorithm  Conjugate-gradient Method  Sufficient Conditions