×
验证码:
换一张
Forgotten Password?
Stay signed in
Login With UMPASS
English
|
繁體
Login With UMPASS
Log In
ALL
ORCID
Title
Creator
Date Issued
Subject Area
Keyword
Document Type
Source Publication
Date Accessioned
Indexed By
Publisher
Funding Project
MOST Discipline Catalogue
Study Hall
Image search
Paste the image URL
Home
Collections
Authors
DocType
Subjects
K-Map
Evaluation
K-Integration
News
Search in the results
Collection
Faculty o... [21]
Authors
JIN XIAO ... [11]
LEI SIU LO... [6]
SUN HAIWEI [5]
VONG SEAK ... [1]
Document Type
Journal a... [18]
Conference... [2]
论文 [2]
Date Issued
2019 [1]
2018 [3]
2017 [2]
2016 [2]
2015 [1]
2014 [1]
More...
Language
英语 [19]
英語 [1]
Source Publication
BIT [2]
Computers ... [2]
Internatio... [2]
Numerical ... [2]
Applied Ma... [1]
BIT Numeri... [1]
More...
Funding Project
Indexed By
SCI [15]
CPCI [1]
Funding Organization
×
Knowledge Map
UM
Start a Submission
Submissions
Unclaimed
Claimed
Attach Fulltext
Bookmarks
Browse/Search Results:
1-10 of 22
Help
Selected(
0
)
Clear
Items/Page:
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
Sort:
Select
Title Ascending
Title Descending
Issue Date Ascending
Issue Date Descending
WOS Cited Times Ascending
WOS Cited Times Descending
Submit date Ascending
Submit date Descending
Journal Impact Factor Ascending
Journal Impact Factor Descending
Author Ascending
Author Descending
An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients
Journal article
International Journal of Computer Mathematics, 2019
Authors:
Fang,Zhi Wei
;
Sun,Hai Wei
;
Wei,Hui Qin
Favorite
|
View/Download:23/0
|
TC[WOS]:
0
TC[Scopus]:
1
|
Submit date:2019/05/27
Approximate Inverse
Circulant Matrix
Fast Fourier Transform
Fractional Diffusion Equation
Krylov Subspace Methods
Piecewise Continuous Coefficients
Toeplitz Matrix
A Separable Preconditioner for Time-Space Fractional Caputo-Riesz Diffusion Equations
Conference paper
NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, Univ Macau, Macau, PEOPLES R CHINA, MAY 20-22, 2017
Authors:
Lin, Xuelei
;
Ng, Michael K.
;
Sun, Haiwei
Favorite
|
View/Download:208/0
|
TC[WOS]:
6
TC[Scopus]:
8
|
Submit date:2018/10/30
Block Lower Triangular
Toeplitz-like Matrix
Diagonalization
Separable
Block Is An Element of-circulAnt Preconditioner
Time-space Fractional Diffusion Equations
Fast solution algorithms for exponentially tempered fractional diffusion equations
Journal article
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018,Volume: 34,Issue: 4,Page: 1301-1323
Authors:
Lei, Siu-Long
;
Fan, Daoying
;
Chen, Xu
Favorite
|
View/Download:31/0
|
TC[WOS]:
1
TC[Scopus]:
1
|
Submit date:2018/10/30
Circulant And skew-Circulant Representation Of Toeplitz Inversion
Circulant Preconditioner
Fast Fourier Transform
Tempered Fractional Diffusion Equations
Toeplitz Matrix
Circulant preconditioners for a kind of spatial fractional diffusion equations
Journal article
Numerical Algorithms, 2018
Authors:
Zhi-Wei Fang
;
Michael K. Ng
;
·Hai-Wei Sun
Favorite
|
View/Download:19/0
|
TC[WOS]:
0
TC[Scopus]:
4
|
Submit date:2019/08/09
Fractional Diffusion Equation
Fast Fourier Transform
Krylov Subspace Methods
Toeplitz Matrix
Circulant Preconditioner
A fast numerical method for block lower triangular Toeplitz with dense Toeplitz blocks system with applications to time-space fractional diffusion equations
Journal article
NUMERICAL ALGORITHMS, 2017,Volume: 76,Issue: 3,Page: 605-616
Authors:
Huang, Yun-Chi
;
Lei, Siu-Long
Favorite
|
View/Download:25/0
|
TC[WOS]:
5
TC[Scopus]:
9
|
Submit date:2018/10/30
Block Lower Triangular Toeplitz Matrix With Dense Toeplitz Blocks
Circulant-and-skew-circulant Representation Of Toeplitz Matrix Inversion
Divide-and-conquer Strategy
Fast Fourier Transform
Time-space Fractional Partial Differential Equations
Fast algorithms for high-order numerical methods for space-fractional diffusion equations
Journal article
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017,Volume: 94,Issue: 5,Page: 1062-1078
Authors:
Lei, Siu-Long
;
Huang, Yun-Chi
Favorite
|
View/Download:52/0
|
TC[WOS]:
18
TC[Scopus]:
22
|
Submit date:2018/10/30
Fractional Diffusion Equation
Fourth-order Discretization
Boundary Value Method
Crank-nicolson Preconditioner
Block-circulant Preconditioner
Gmres Method
Circulant- And Skew-circulant Representation Of Toeplitz Matrix Inversion
A fast accurate approximation method with multigrid solver for two-dimensional fractional sub-diffusion equation
Journal article
Journal of Computational Physics, 2016,Volume: 323,Page: 204-218
Authors:
Lin,Xue lei
;
Lu,Xin
;
Ng,Micheal K.
;
Sun,Hai Wei
Favorite
|
View/Download:14/0
|
TC[WOS]:
6
TC[Scopus]:
6
|
Submit date:2019/05/27
Block Lower Triangular Toeplitz Matrix
Block Ε-circulant Approximation
Fractional Sub-diffusion Equations
Multigrid Method
On CSCS-based iteration method for tempered fractional diffusion equations
Journal article
Japan Journal of Industrial and Applied Mathematics, 2016,Volume: 33,Issue: 3,Page: 583-597
Authors:
Qu W.
;
Lei S.-L.
Favorite
|
View/Download:13/0
|
TC[WOS]:
2
TC[Scopus]:
2
|
Submit date:2019/02/14
Circulant And skew-Circulant Splitting Iteration
Fast Fourier Transform
Preconditioner
Tempered Fractional Diffusion Equation
Toeplitz Matrix
Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations
Journal article
Numerical Linear Algebra with Applications, 2015,Volume: 22,Issue: 5,Page: 866-882
Authors:
Lu X.
;
Pang H.-K.
;
Sun H.-W.
Favorite
|
View/Download:7/0
|
TC[WOS]:
23
TC[Scopus]:
33
|
Submit date:2019/02/13
Block Triangular Toeplitz Matrix
Block ε{Lunate}-circulant Matrix
Fourier Transform
Fractional Sub-diffusion Equations
Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations
Journal article
International Journal of Computer Mathematics, 2014,Volume: 91,Issue: 10,Page: 2232
Authors:
Qu W.
;
Lei S.-L.
;
Vong S.-W.
Favorite
|
View/Download:8/0
|
TC[WOS]:
24
TC[Scopus]:
27
|
Submit date:2018/10/30
Circulant And skew-Circulant Splitting Iteration
Fast Fourier Transform
Fractional Advection–diffusion Equation
Toeplitz Matrix