UM
(Note: the search results are based on claimed items)

Browse/Search Results:  1-10 of 10 Help

Filters        
Selected(0)Clear Items/Page:    Sort:
Fault diagnosis of rotating machinery based on multiple probabilistic classifiers Journal article
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018,Volume: 108,Page: 99-114
Authors:  Zhong, Jian-Hua;  Wong, Pak Kin;  Yang, Zhi-Xin
Favorite  |  View/Download:20/0  |  Submit date:2018/10/30
Rotating Machinery  Automotive Engine  Simultaneous-fault Diagnosis  Sparse Bayesian Extreme Learning Machine  Probabilistic Committee Machine  
Initial-Training-Free Online Sequential Extreme Learning Machine Based Adaptive Engine Air-fuel Ratio Control Journal article
International Journal of Machine Learning and Cybernetics, 2018
Authors:  Pak Kin Wong;  Xiang Hui Gao;  Ka In Wong;  Chi Man Vong;  Zhi-Xin Yang
Favorite  |  View/Download:8/0  |  Submit date:2019/04/04
Automotive Engine  Air–fuel Ratio  Online Sequential Extreme Learning Machine  Adaptive Control  
Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery Journal article
Energies, 2017,Volume: 10,Issue: 10
Authors:  Liang J.;  Zhong J.-H.;  Yang Z.-X.
Favorite  |  View/Download:7/0  |  Submit date:2018/12/22
Acoustic Signal  Ensemble Empirical Mode Decomposition  Sample Entropy  Singular Value Decomposition  Sparse Bayesian Extreme Learning Machine  
A new framework for intelligent simultaneous-fault diagnosis of rotating machinery using pairwise-coupled sparse Bayesian extreme learning committee machine Journal article
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE, 2017,Volume: 231,Issue: 6,Page: 1146-1161
Authors:  Wong, Pak Kin;  Zhong, Jian-Hua;  Yang, Zhi-Xin;  Vong, Chi Man
Favorite  |  View/Download:26/0  |  Submit date:2018/10/30
Rotating Machinery  Simultaneous-fault Diagnosis  Pairwise-coupled Sparse Bayesian Extreme Learning Machine  Probabilistic Committee Machine  
ELM Meets RAE-ELM: A hybrid intelligent model for multiple fault diagnosis and remaining useful life predication of rotating machinery Conference paper
Proceedings of the International Joint Conference on Neural Networks, Vancouver, BC, Canada, 24-29 July 2016
Authors:  Yang Z.-X.;  Zhang P.-B.
Favorite  |  View/Download:4/0  |  Submit date:2018/12/22
Extreme Learning Machine (Elm)  Fault Diagnosis  Hybrid Intelligent Model  Network  Predication  Remaining Useful Life  
Sparse Bayesian extreme learning committee machine for engine simultaneous fault diagnosis Journal article
Neurocomputing, 2016,Volume: 174,Page: 331-343
Authors:  Wong P.K.;  Zhong J.;  Yang Z.;  Vong C.M.
Favorite  |  View/Download:9/0  |  Submit date:2018/12/22
Automotive Engine  Multi-signal Fusion  Probabilistic Committee Machine  Simultaneous-fault Diagnosis  Sparse Bayesian Extreme Learning Machine  
RFID-enabled indoor positioning method for a real-time manufacturing execution system using OS-ELM Journal article
Neurocomputing, 2016,Volume: 174,Page: 121
Authors:  Yang Z.;  Zhang P.;  Chen L.
Favorite  |  View/Download:6/0  |  Submit date:2018/10/30
Indoor Positioning  Manufacturing Execution System (Mes)  Online Sequential Extreme Learning Machine (Os-elm)  Real-time Signal Processing  Rfid  Smart Manufacturing Objects (Smos)  
OS-ELM Based Real-Time RFID Indoor Positioning System for Shop-Floor Management Conference paper
Proceedings of ELM-2014, Singapore, December 8-10, 2014
Authors:  Zhixin Yang;  Lei Chen;  Pengbo Zhang
Favorite  |  View/Download:5/0  |  Submit date:2019/04/02
Online Sequential Extreme Learning Machine (Os-elm)  Rfid  Indoor Positioning  Shop-floor Management  Manufacturing Execution System  
Ensemble Extreme Learning Machine Based on a New Self-adaptive AdaBoost.RT Conference paper
Proceedings of ELM-2014, Singapore, December 8-10, 2014
Authors:  Pengbo Zhang;  Zhixin Yang
Favorite  |  View/Download:7/0  |  Submit date:2019/04/02
Extreme Learning Machine  Single-hidden Layer Feedforward Networks  Self-adaptive Adaboost.rt Algorithm  Regression  Ensemble  
Real-time fault diagnosis for gas turbine generator systems using extreme learning machine Journal article
Neurocomputing, 2014,Volume: 128,Page: 249
Authors:  Wong P.K.;  Yang Z.;  Vong C.M.;  Zhong J.
Favorite  |  View/Download:18/0  |  Submit date:2018/10/30
Extreme Learning Machine  Gas Turbine Generator System  Kernel Principal Component Analysis  Real-time Fault Diagnosis  Time-domain Statistical Features  Wavelet Packet Transform