UM

Browse/Search Results:  1-6 of 6 Help

Filters        
Selected(0)Clear Items/Page:    Sort:
A multilevel correction adaptive finite element method for Kohn–Sham equation Journal article
Journal of Computational Physics, 2018,Volume: 355,Page: 436-449
Authors:  Hu G.;  Xie H.;  Xu F.
Favorite  |  View/Download:16/0  |  Submit date:2019/02/13
Adaptive Finite Element Method  Density Functional Theory  Kohn–sham Equation  Multilevel Correction  
Real-time adaptive finite element solution of time-dependent Kohn-Sham equation Journal article
Journal of Computational Physics, 2015,Volume: 281,Page: 743-758
Authors:  Bao G.;  Hu G.;  Liu D.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/13
Crank-nicolson  Finite Element Methods  Mesh Adaptive Methods  Multigrid For Complex System  Time-dependent Kohn-sham  
A compact difference scheme for a two dimensional fractional Klein-Gordon equation with Neumann boundary conditions Journal article
Journal of Computational Physics, 2014,Volume: 274,Page: 268-282
Authors:  Vong S.;  Wang Z.
Favorite  |  View/Download:9/0  |  Submit date:2018/12/24
Compact Difference Scheme  Convergence  Stability  Two Dimensional Fractional Klein-gordon Equation  
An adaptive finite volume method for 2D steady Euler equations with WENO reconstruction Journal article
Journal of Computational Physics, 2013,Volume: 252,Page: 591-605
Authors:  Hu G.
Favorite  |  View/Download:3/0  |  Submit date:2019/02/13
Adaptive methods  Finite volume methods  Steady Euler equations  Unstructured grids  WENO reconstruction  
Preconditioned iterative methods for fractional diffusion equation Journal article
Journal of Computational Physics, 2013,Volume: 256,Page: 109
Authors:  Lin F.-R.;  Yang S.-W.;  Jin X.-Q.
Favorite  |  View/Download:8/0  |  Submit date:2018/10/30
Fft  Fractional Diffusion Equation  Preconditioned Cgnr Method  Preconditioned Gmres Method  Toeplitz Matrix  
Simulating finger phenomena in porous media with a moving finite element method Journal article
Journal of Computational Physics, 2011,Volume: 230,Issue: 8,Page: 3249-3263
Authors:  Hu G.;  Zegeling P.A.
Favorite  |  View/Download:2/0  |  Submit date:2019/02/13
Finger phenomenon  Gravity-driven flow  Moving finite element method  Non-equilibrium RE  Porous medium