UM

Browse/Search Results:  1-8 of 8 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Prolate spheroidal wave functions associated with the quaternionic Fourier transform Conference paper
Mathematical Methods in the Applied Sciences
Authors:  Zou C.;  Kou K.I.;  Morais J.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/13
bandlimited extrapolation  Mathieu functions  quaternionic analysis  quaternionic Fourier transform  quaternionic signal  the energy concentration problem  
Constructing prolate spheroidal quaternion wave functions on the sphere Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 14,Page: 3961-3978
Authors:  Morais J.;  Kou K.I.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/13
30c65  Prolate Spheroidal Wave Functions  Quaternionic Analysis  Quaternionic Fourier Transform  Quaternionic Functions  Spherical Harmonics  Subclass 30g35  The Energy Concentration Problem  
Uncertainty principles associated with quaternionic linear canonical transforms Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 10,Page: 2722-2736
Authors:  Kou K.I.;  Ou J.;  Morais J.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/13
Gaussian Quaternionic Signal  Hypercomplex Functions  Quantum Mechanics  Quaternion Analysis  Quaternionic Fourier Transform  Quaternionic Linear Canonical Transform  Uncertainly Principle  
Two-dimensional adaptive Fourier decomposition Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 10,Page: 2431-2448
Authors:  Tao Qian
Favorite  |  View/Download:5/0  |  Submit date:2019/02/11
Complex Hardy Space  Greedy Algorithm  Induced Complete Dictionary  Instantaneous Frequency  Multiple Fourier Series  Product-szegö Dictionary  Product-tm System  Rational Orthogonal System  Several Complex Variables  Signal Analysis  Systems Identification  Takenaka–malmquist System  
Consecutive minimum phase expansion of physically realizable signals with applications Journal article
Mathematical Methods in the Applied Sciences, 2016,Volume: 39,Issue: 1,Page: 62-72
Authors:  Mai W.;  Dang P.;  Zhang L.;  Qian T.
Favorite  |  View/Download:9/0  |  Submit date:2019/02/11
Blaschke Product  Dirac Type Time-frequency Distribution  Unwinding Afd  
On sparse representation of analytic signal in Hardy space Journal article
Mathematical Methods in the Applied Sciences, 2013,Volume: 36,Issue: 17,Page: 2297-2310
Authors:  Li S.;  Qian T.
Favorite  |  View/Download:7/0  |  Submit date:2019/02/11
ℓ1- Minimization  Compressed Sensing  Hardy Space  Reproducing Kernels  Singular Value  Sparse Representation  
Hardy–Sobolev derivatives of phase andamplitude, and their applications Journal article
Mathematical Methods in the Applied Sciences, 2012,Volume: 35,Issue: 17,Page: 2017–2030
Authors:  Pei Dang;  Tao Qian;  Yan Yang
Favorite  |  View/Download:22/0  |  Submit date:2019/06/17
Amplitude-phase Representation Of Signal  Derivatives Of Phase Andamplitude  Sobolev Space  Hardy Space  Hilbert Transform  Instantaneous Frequency  
Mono-components for decomposition of signals Journal article
Mathematical Methods in the Applied Sciences, 2006,Volume: 29,Issue: 10,Page: 1187
Authors:  Qian T.
Favorite  |  View/Download:5/0  |  Submit date:2018/10/30
Analytic Signal  Empirical Mode Decomposition  Hht (Hilbert-huang Transform)  Hubert Transform  Instantaneous Frequency  Intrinsic Mode Functions  Möbius Transform  Monocomponent  Starlike Functions