UM

Browse/Search Results:  1-5 of 5 Help

Filters    
Selected(0)Clear Items/Page:    Sort:
Using graph-based ensemble learning to classify imbalanced data Conference paper
2017 3rd IEEE International Conference on Cybernetics, CYBCONF 2017 - Proceedings
Authors:  Qin A.;  Shang Z.;  Tian J.;  Zhang T.;  Wang Y.;  Tang Y.Y.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/11
Using Graph-Based Ensemble Learning to Classify Imbalanced Data Conference paper
Authors:  Qin, Anyong;  Shang, Zhaowei;  Tian, Jinyu;  Zhang, Taiping;  Wang, Yulong;  Tang, Yuan Yan;  IEEE
Favorite  |  View/Download:8/0  |  Submit date:2018/10/30
Imbalanced data  Ensemble learning  Consensus maximization  
Dynamic weighted majority for incremental learning of imbalanced data streams with concept drift? Conference paper
IJCAI International Joint Conference on Artificial Intelligence
Authors:  Lu Y.;  Cheung Y.-M.;  Tang Y.Y.
Favorite  |  View/Download:0/0  |  Submit date:2019/02/11
GOBoost: G-mean optimized boosting framework for class imbalance learning Conference paper
Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Guilin, China, 12-15 June 2016
Authors:  Yang Lu;  Yiu-ming Cheung;  Yuan Yan Tang
Favorite  |  View/Download:11/0  |  Submit date:2019/02/11
Hybrid Sampling with Bagging for Class Imbalance Learning Conference paper
Lecture Notes in Computer Science (ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING), Univ Auckland, Auckland, NEW ZEALAND, APR 19-22, 2016
Authors:  Yang Lu;  Yiu-ming Cheung;  Yuan Yan Tang
Favorite  |  View/Download:2/0  |  Submit date:2019/02/11
Class Imbalance Learning  Ensemble Method  Hybrid Sampling  Sampling Method