UM
(本次检索基于用户作品认领结果)

浏览/检索结果: 共65条,第1-10条 帮助

限定条件            
已选(0)清除 条数/页:   排序方式:
Practical multi-objective control for automotive semi-active suspension system with nonlinear hydraulic adjustable damper Journal article
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019,Volume: 117,Page: 667-688
作者:  Ma, Xinbo;  Wong, Pak Kin;  Zhao, Jing
收藏  |  浏览/下载:40/0  |  提交时间:2018/10/30
Semi-active suspension  Multi-objective control  Damper control  Sliding mode control  Particle swarm optimization  Neural network  
Design and Control of an Automotive Variable Hydraulic Damper Using Cuckoo Search Optimized Pid Method Journal article
International Journal of Automotive Technology, 2019,Volume: 20,Issue: 1,Page: 51-63
作者:  Zhao J.;  Wong P.K.;  Xie Z.;  Ma X.;  Hua X.
收藏  |  浏览/下载:1/0  |  提交时间:2019/03/26
Cuckoo Search Optimization  Damper Control  Pid  Semi-active Vehicle Suspension  
Robust Non-fragile H∞ Optimum Control for Active Suspension Systems with Time-varying Actuator Delay Journal article
Journal of Vibration and Control, 2019
作者:  Wenfeng Li;  Zhengchao Xie;  Pak Kin Wong;  Yucong Cao;  Xingqi Hua;  Jing Zhao
收藏  |  浏览/下载:1/0  |  提交时间:2019/06/25
Active Suspension  Actuator Delay  H∞ Control  Convex Optimization  Quarter-car Test Rig  
Multi-View CNN Feature Aggregation with ELM Auto-Encoder for 3D Shape Recognition Journal article
COGNITIVE COMPUTATION, 2018,Volume: 10,Issue: 6,Page: 908-921
作者:  Yang, Zhi-Xin;  Tang, Lulu;  Zhang, Kun;  Wong, Pak Kin
收藏  |  浏览/下载:16/0  |  提交时间:2019/01/17
Elm Auto-encoder  Convolutional Neural Networks  3d Shape Recognition  Multi-view Feature Aggregation  
Single and Simultaneous Fault Diagnosis With Application to a Multistage Gearbox: A Versatile Dual-ELM Network Approach Journal article
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018,Volume: 14,Issue: 12,Page: 5245-5255
作者:  Yang, Zhi-Xin;  Wang, Xian-Bo;  Wong, Pak Kin
收藏  |  浏览/下载:5/0  |  提交时间:2019/01/17
Extreme Learning Machines (Elm)  Fault Diagnosis  Local Mean Decomposition (Lmd)  Single And Simultaneous Faults  Multistage Gearbox  
Design and analysis of an integrated sliding mode control–two-point wheelbase preview strategy for a semi-active air suspension with stepper motor-driven gas-filled adjustable shock absorber Journal article
Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 2018,Volume: 232,Issue: 9,Page: 1194-1211
作者:  Zhao J.;  Wong P.K.;  Ma X.;  Xie Z.
收藏  |  浏览/下载:7/0  |  提交时间:2019/02/13
Gas-filled Adjustable Shock Absorber  Multi-point Wheelbase Preview  Semi-active Air Suspension  Sliding-mode Control  
Adaptive air-fuel ratio control of dual-injection engines under biofuel blends using extreme learning machine Journal article
ENERGY CONVERSION AND MANAGEMENT, 2018,Volume: 165,Page: 66-75
作者:  Wong, Ka In;  Wong, Pak Kin
收藏  |  浏览/下载:9/0  |  提交时间:2018/10/30
Biofuel  Dual-injection  Air fuel ratio control  Adaptive control  Extreme learning machine  
Efficient point-by-point engine calibration using machine learning and sequential design of experiment strategies Journal article
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2018,Volume: 355,Issue: 4,Page: 1517-1538
作者:  Wong, Pak Kin;  Gao, Xiang Hui;  Wong, Ka In;  Vong, Chi Man
收藏  |  浏览/下载:18/0  |  提交时间:2018/10/30
Output-feedback model-reference adaptive calibration for map-based anti-jerk control of electromechanical automotive clutches Journal article
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018,Volume: 32,Issue: 2,Page: 265-285
作者:  Huang, Wei;  Wong, Pak Kin;  Zhao, Jing;  Ma, Xinbo
收藏  |  浏览/下载:9/0  |  提交时间:2018/10/30
Adaptive Calibration  Anti-jerk Control  Clutch Engagement  Data-driven Fuzzy Logic  
Initial-Training-Free Online Sequential Extreme Learning Machine Based Adaptive Engine Air-fuel Ratio Control Journal article
International Journal of Machine Learning and Cybernetics, 2018
作者:  Pak Kin Wong;  Xiang Hui Gao;  Ka In Wong;  Chi Man Vong;  Zhi-Xin Yang
收藏  |  浏览/下载:5/0  |  提交时间:2019/04/04
Automotive Engine  Air–fuel Ratio  Online Sequential Extreme Learning Machine  Adaptive Control