UM

Browse/Search Results:  1-4 of 4 Help

Filters                        
Selected(0)Clear Items/Page:    Sort:
An approximate inverse preconditioner for spatial fractional diffusion equations with piecewise continuous coefficients Journal article
International Journal of Computer Mathematics, 2019
Authors:  Fang,Zhi Wei;  Sun,Hai Wei;  Wei,Hui Qin
Favorite  |  View/Download:16/0  |  Submit date:2019/05/27
Approximate Inverse  Circulant Matrix  Fast Fourier Transform  Fractional Diffusion Equation  Krylov Subspace Methods  Piecewise Continuous Coefficients  Toeplitz Matrix  
A high-order ADI scheme for the two-dimensional time fractional diffusion-wave equation Journal article
International Journal of Computer Mathematics, 2015,Volume: 92,Issue: 5,Page: 970-979
Authors:  Wang Z.;  Vong S.
Favorite  |  View/Download:1/0  |  Submit date:2018/12/24
Compact Adi Scheme  Convergence  Finite Difference Scheme  Fractional Diffusion-wave Equation  Weighted And Shifted Grünwald Difference Operator  
Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations Journal article
International Journal of Computer Mathematics, 2014,Volume: 91,Issue: 10,Page: 2232
Authors:  Qu W.;  Lei S.-L.;  Vong S.-W.
Favorite  |  View/Download:4/0  |  Submit date:2018/10/30
Circulant And skew-Circulant Splitting Iteration  Fast Fourier Transform  Fractional Advection–diffusion Equation  Toeplitz Matrix  
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model Journal article
International Journal of Computer Mathematics, 2011,Volume: 88,Issue: 8,Page: 1730-1748
Authors:  Shu-Ling Yang;  Spike T. Lee;  Hai-Wei Sun
Favorite  |  View/Download:4/0  |  Submit date:2019/02/13
Boundary Value Method  Crank-nicolson Time-marching Scheme  Fourth-order Compact Scheme  Jump-diffusion  Preconditioner  Toeplitz Matrix