UM

Browse/Search Results:  1-10 of 16 Help

Selected(0)Clear Items/Page:    Sort:
Total variation regularized low-rank tensor approximation for color image denoising Conference paper
2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, Japan, 7-10 Oct. 2018
Authors:  Yongyong Chen;  Yicong Zhou
Favorite  |  View/Download:6/0  |  Submit date:2019/03/26
Low-rank Tensor Approximation  Tensor-singular Value Decomposition  Color Image Denoising  
A Weighted K-SVD-Based Double Sparse Representations Approach for Wireless Channels Using the Modified Takenaka-Malmquist Basis Journal article
IEEE Access, 2018,Volume: 6,Page: 54331-54342
Authors:  Lei Y.;  Fang Y.;  Zhang L.
Favorite  |  View/Download:5/0  |  Submit date:2019/04/04
parallel update  public weighted modified Takenaka-Malmquist basis  sparse representations  Training method  weighted K-SVD  wireless channels  
Fault diagnosis of rotating machinery based on multiple probabilistic classifiers Journal article
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018,Volume: 108,Page: 99-114
Authors:  Zhong, Jian-Hua;  Wong, Pak Kin;  Yang, Zhi-Xin
Favorite  |  View/Download:23/0  |  Submit date:2018/10/30
Rotating Machinery  Automotive Engine  Simultaneous-fault Diagnosis  Sparse Bayesian Extreme Learning Machine  Probabilistic Committee Machine  
Broad Learning System: An Effective and Efficient Incremental Learning System Without the Need for Deep Architecture Journal article
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018,Volume: 29,Issue: 1,Page: 10-24
Authors:  Chen, C. L. Philip;  Liu, Zhulin
Favorite  |  View/Download:29/0  |  Submit date:2018/10/30
Big data  big data modeling  broad learning system (BLS)  deep learning  incremental learning  random vector functional-link neural networks (RVFLNN)  single layer feedforward neural networks (SLFN)  singular value decomposition (SVD)  
Broad learning system: Feature extraction based on K-means clustering algorithm Conference paper
ICCSS 2017 - 2017 International Conference on Information, Cybernetics, and Computational Social Systems
Authors:  Liu Z.;  Zhou J.;  Chen C.L.P.
Favorite  |  View/Download:5/0  |  Submit date:2019/02/11
broad learning system  deep learning  feature representation  incremental learning  K-means  random vector functional link networks  Single layer feedforward neural networks  SVD  
Correlated EEMD and effective feature extraction for both periodic and irregular faults diagnosis in rotating machinery Journal article
Energies, 2017,Volume: 10,Issue: 10
Authors:  Liang J.;  Zhong J.-H.;  Yang Z.-X.
Favorite  |  View/Download:8/0  |  Submit date:2018/12/22
Acoustic Signal  Ensemble Empirical Mode Decomposition  Sample Entropy  Singular Value Decomposition  Sparse Bayesian Extreme Learning Machine  
Correlated EEMD and Effective Feature Extraction for Both Periodic and Irregular Faults Diagnosis in Rotating Machinery Journal article
ENERGIES, 2017,Volume: 10,Issue: 10
Authors:  Liang, Jiejunyi;  Zhong, Jian-Hua;  Yang, Zhi-Xin
Favorite  |  View/Download:24/0  |  Submit date:2018/10/30
acoustic signal  ensemble empirical mode decomposition  sparse Bayesian extreme learning machine  sample entropy  singular value decomposition  
Broad Learning System: Feature extraction based on K-means clustering algorithm Conference paper
Authors:  Liu, Zhulin;  Zhou, Jin;  Chen, C. L. Philip;  IEEE
Favorite  |  View/Download:10/0  |  Submit date:2018/10/30
Single layer feedforward neural networks  SVD  random vector functional link networks  broad learning system  incremental learning  deep learning  K-means  feature representation  
A hybrid EEMD-based SampEn and SVD for acoustic signal processing and fault diagnosis Journal article
Entropy, 2016,Volume: 18,Issue: 4
Authors:  Yang Z.-X.;  Zhong J.-H.
Favorite  |  View/Download:7/0  |  Submit date:2018/12/22
Acoustic Signal Processing  Ensemble Empirical Mode Decomposition (Eemd)  Fault Diagnosis  Hybrid System  Sample Entropy (Sampen)  Singular Value Decomposition (Svd)  
A novel wavelet transform – empirical mode decomposition based sample entropy and SVD approach for acoustic signal fault diagnosis Conference paper
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Beijing, China, 2015
Authors:  Liang J.;  Yang Z.
Favorite  |  View/Download:5/0  |  Submit date:2018/12/22
Acoustic Signal  Incipient Fault Diagnosis  Sample Entropy  Singular Value Decomposition  Wavelet Transform- Empirical Mode Decomposition