UM

Browse/Search Results:  1-10 of 238 Help

Selected(0)Clear Items/Page:    Sort:
Joint deep convolutional feature representation for hyperspectral palmprint recognition Journal article
Information Sciences, 2019,Volume: 489,Page: 167-181
Authors:  Zhao S.;  Zhang B.;  Philip Chen C.L.
Favorite  |  View/Download:16/0  |  Submit date:2019/04/04
CNN stack  Hyperspectral palmprint recognition  Joint convolutional feature  
A Novel Scheme Based on the Diffusion to Edge Detection Journal article
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019,Volume: 28,Issue: 4,Page: 1613-1624
Authors:  He, Yuesheng;  Ni, Lionel M.
Favorite  |  View/Download:0/0  |  Submit date:2019/01/17
Image processing  diffusion  edge detection  Sobolev space  Bessel potential  
A novel phase analysis method for examining fNIRS neuroimaging data associated with Chinese/English sight translation Journal article
Behavioural Brain Research, 2019,Volume: 361,Page: 151-158
Authors:  Ren,Houhua;  Wang,Meng Yun;  He,Yan;  Du,Zhengcong;  Zhang,Jiang;  Zhang,Jing;  Li,Defeng;  Yuan,Zhen
Favorite  |  View/Download:2/0  |  Submit date:2019/10/08
Chinese/English translation  fNIRS  Functional connectivity  Phase analysis method  
An Integrated Transfer Learning and Multitask Learning Approach for Pharmacokinetic Parameter Prediction Journal article
Molecular Pharmaceutics, 2019,Volume: 16,Issue: 2,Page: 533-541
Authors:  Ye Z.;  Yang Y.;  Li X.;  Cao D.;  Ouyang D.
Favorite  |  View/Download:7/0  |  Submit date:2019/02/14
ADME  deep learning  multitask learning  pharmacokinetic parameters  transfer learning  
SeqViews2SeqLabels: Learning 3D global features via aggregating sequential views by RNN with attention Journal article
IEEE Transactions on Image Processing, 2019,Volume: 28,Issue: 2,Page: 658-672
Authors:  Han Z.;  Shang M.;  Liu Z.;  Vong C.-M.;  Liu Y.-S.;  Zwicker M.;  Han J.;  Chen C.L.P.
Favorite  |  View/Download:8/0  |  Submit date:2019/02/14
3d Feature Learning  Attention  Rnn  Sequential Labels  Sequential Views  View Aggregation  
Spectral-Spatial Graph Convolutional Networks for Semisupervised Hyperspectral Image Classification Journal article
IEEE Geoscience and Remote Sensing Letters, 2019,Volume: 16,Issue: 2,Page: 241-245
Authors:  Qin A.;  Shang Z.;  Tian J.;  Wang Y.;  Zhang T.;  Tang Y.Y.
Favorite  |  View/Download:16/0  |  Submit date:2019/02/11
Graph convolutional  hyperspectral image (HSI) classification  neural network  semisupervised learning  
Deep Fusion Network for Splicing Forgery Localization Conference paper
ECCV 2018: Computer Vision – ECCV 2018 Workshops, Munich, Germany, 2018-8-14
Authors:  Liu, Bo;  Pun, Chi-Man
Favorite  |  View/Download:12/0  |  Submit date:2019/05/24
Image Forensics  Splicing Forgery Detection  Forgery Localization  Deep Convolutional Network  Fusion Network  
Cooperation Control of Under-actuated Mobile Robots with RBF-NN Approximator Conference paper
2018 International Automatic Control Conference (CACS), Taoyuan, Taiwan, 2018-11
Authors:  Yu Z.;  Wong S.F.
Favorite  |  View/Download:5/0  |  Submit date:2019/03/28
Cooperation Control  Lyapunov Direct Method  Rbf Neural Networks  Tracking Control Algorithm  Underactuated Mobile Robot  
Adaptive Reinforcement Learning Control Based on Neural Approximation for Nonlinear Discrete-Time Systems With Unknown Nonaffine Dead-Zone Input Journal article
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2019,Volume: 30,Issue: 1,Page: 295-305
Authors:  Liu, Yan-Jun;  Li, Shu;  Tong, Shaocheng;  Chen, C. L. Philip
Favorite  |  View/Download:0/0  |  Submit date:2019/01/17
Discrete-time systems  neural networks (NNs)  nonlinear systems  optimal control  reinforcement learning  
Adaptive Reinforcement Learning Control Based on Neural Approximation for Nonlinear Discrete-Time Systems with Unknown Nonaffine Dead-Zone Input Journal article
IEEE Transactions on Neural Networks and Learning Systems, 2019,Volume: 30,Issue: 1,Page: 295-305
Authors:  Liu Y.-J.;  Li S.;  Tong S.;  Chen C.L.P.
Favorite  |  View/Download:1/0  |  Submit date:2019/02/11
Discrete-time systems  neural networks (NNs)  nonlinear systems  optimal control  reinforcement learning