UM

Browse/Search Results:  1-10 of 10 Help

Selected(0)Clear Items/Page:    Sort:
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Conference paper
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite  |  View/Download:4/0  |  Submit date:2018/10/30
Euler equations  gravitational fields  source term  steady state solution  weighted compact  nonlinear Scheme  
High-order compact schemes for fractional differential equations with mixed derivatives Journal article
Numerical Methods for Partial Differential Equations, 2017,Volume: 33,Issue: 6,Page: 2141-2158
Authors:  Vong S.;  Shi C.;  Lyu P.
Favorite  |  View/Download:2/0  |  Submit date:2018/12/24
Fractional Differential Equation  High-order Compact Scheme  Mixed Derivatives  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for Shallow Water Equations Journal article
COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2017,Volume: 22,Issue: 4,Page: 1049-1068
Authors:  Gao, Zhen;  Hu, Guanghui
Favorite  |  View/Download:14/0  |  Submit date:2018/10/30
Shallow Water Equations  C-property  Weighted Compact Nonlinear Scheme  Source Term  
High Order Well-Balanced Weighted Compact Nonlinear Schemes for the Gas Dynamic Equations under Gravitational Fields Journal article
East Asian Journal on Applied Mathematics, 2017,Volume: 7,Issue: 4,Page: 697-713
Authors:  Gao Z.;  Hu G.
Favorite  |  View/Download:3/0  |  Submit date:2019/02/13
Euler Equations  Gravitational Fields  Source Term  Steady State Solution  Weighted Compact Nonlinear Scheme  
High order difference schemes for a time fractional differential equation with neumann boundary conditions Journal article
East Asian Journal on Applied Mathematics, 2014,Volume: 4,Issue: 3,Page: 222-241
Authors:  Vong S.;  Wang Z.
Favorite  |  View/Download:3/0  |  Submit date:2018/12/24
Compact Adi Scheme  Convergence  Neumann Boundary Conditions  Time Fractional Differential Equation  Weighted And Shifted Grünwald Difference Operator  
Compact finite difference scheme for the fourth-order fractional subdiffusion system Journal article
Advances in Applied Mathematics and Mechanics, 2014,Volume: 6,Issue: 4,Page: 419-435
Authors:  Vong S.;  Wang Z.
Favorite  |  View/Download:7/0  |  Submit date:2018/12/24
Compact Difference Scheme  Convergence  Energy Method  Fourth-order Fractional Subdiffusion Equation  Stability  
Fourth-order compact scheme with local mesh refinement for option pricing in jump-diffusion model Journal article
Numerical Methods for Partial Differential Equations, 2012,Volume: 28,Issue: 3,Page: 1079-1098
Authors:  Lee S.T.;  Sun H.-W.
Favorite  |  View/Download:10/0  |  Submit date:2019/02/13
Fourth-order Compact Scheme  Jump-diffusion  Local Mesh Refinement  Partial Integro-differential Equation  Toeplitz Matrix  
Fourth-Order Compact Scheme with Local MeshRefinement for Option Pricing in Jump-DiffusionModel Journal article
Numerical Methods for Partial Differential Equations, 2011,Volume: 28,Issue: 3,Page: 1079-1098
Authors:  Spike T. Lee;  Hai‐Wei Sun
Favorite  |  View/Download:3/0  |  Submit date:2019/07/30
Fourth-order Compact Scheme  Jump-diffusion  Local Mesh Refinement  Partial Integro-differentialequation  Toeplitz Matrix  
Boundary value methods with the Crank-Nicolson preconditioner for pricing options in the jump-diffusion model Journal article
International Journal of Computer Mathematics, 2011,Volume: 88,Issue: 8,Page: 1730-1748
Authors:  Shu-Ling Yang;  Spike T. Lee;  Hai-Wei Sun
Favorite  |  View/Download:6/0  |  Submit date:2019/02/13
Boundary Value Method  Crank-nicolson Time-marching Scheme  Fourth-order Compact Scheme  Jump-diffusion  Preconditioner  Toeplitz Matrix  
A fourth-order compact BVM scheme for the two-dimensional heat equations Conference paper
Proceedings of the 2008 International Conference on Scientific Computing, CSC 2008
Authors:  Sun H.-W.;  Wang W.
Favorite  |  View/Download:5/0  |  Submit date:2019/02/13
BVMs  Compact difference scheme  Crank-Nicolson  Heat equation  Unconditional stability