UM

Browse/Search Results:  1-10 of 84 Help

Selected(0)Clear Items/Page:    Sort:
Tourism demand forecasting: A deep learning approach Journal article
Annals of Tourism Research, 2019,Volume: 75,Page: 410-423
Authors:  Law,Rob;  Li,Gang;  Fong,Davis Ka Chio;  Han,Xin
Favorite  |  View/Download:4/0  |  Submit date:2019/08/01
Attention Mechanism  Deep Learning  Feature Engineering  Lag Order  Long-short-term-memory  Tourism Demand Forecasting  
Hong Kong and Shanghai: A tale of two cities in China Journal article
Tempo Social, 2019,Volume: 30,Issue: 3,Page: 171-190
Authors:  Sheng,Li
Favorite  |  View/Download:5/0  |  Submit date:2019/06/26
Competition  Competitiveness  Competitividade  Concorrência  Cooperation  Cooperação  Integration  Integração  Liderança Estratégica  Strategic Lead  
Hong Kong and Shanghai: A tale of two cities in China Journal article
Tempo Social, 2019,Volume: 30,Issue: 3,Page: 171-190
Authors:  Sheng,Li
Favorite  |  View/Download:1/0  |  Submit date:2019/06/18
Competition  Competitiveness  Competitividade  Concorrência  Cooperation  Cooperação  Integration  Integração  Liderança estratégica  Strategic lead  
Weather research and forecasting model simulations over the Pearl River Delta Region Journal article
Air Quality, Atmosphere and Health, 2019,Volume: 12,Issue: 1,Page: 115-125
Authors:  Lopes D.;  Ferreira J.;  Hoi K.I.;  Miranda A.I.;  Yuen K.V.;  Mok K.M.
Favorite  |  View/Download:4/0  |  Submit date:2019/02/12
Air Quality Modelling  Parameterization Schemes  Pearl River Delta  Wrf-arw  
A Multi-Model Combination Approach for Probabilistic Wind Power Forecasting Journal article
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019,Volume: 10,Issue: 1,Page: 226-237
Authors:  Lin, You;  Yang, Ming;  Wan, Can;  Wang, Jianhui;  Song, Yonghua
Favorite  |  View/Download:4/0  |  Submit date:2019/01/17
Terms-Multi-model combination  probabilistic forecasting  wind power  uncertainty  
Predicting ground-level ozone concentrations by adaptive Bayesian model averaging of statistical seasonal models Journal article
Stochastic Environmental Research and Risk Assessment, 2018,Volume: 32,Issue: 5,Page: 1283-1297
Authors:  Mok, K. M.;  Yuen, K. V.;  Hoi, K. I.;  Chao, K. M.;  Lopes, D.
Favorite  |  View/Download:16/0  |  Submit date:2018/10/30
Adaptive Bayesian Model Averaging  Kalman Filter  Model Switching  Ozone Prediction  Statistical Model  
Asymptotic properties of the realized skewness and related statistics Journal article
Annals of the Institute of Statistical Mathematics, 2018
Authors:  Yuta Koike;  Zhi Liu
Favorite  |  View/Download:1/0  |  Submit date:2019/06/10
High-frequency Data  Realized Skewness  Stochastic Sampling  Itô Semimartingale  Jumps  Microstructure Noise  
Divergent trajectories of sectoral evolution: The case of Traditional Chinese Medicine in China (1949-2015) Journal article
TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2018,Volume: 128,Page: 252-261
Authors:  Chung, Chao-chen;  Hu, Hao
Favorite  |  View/Download:6/0  |  Submit date:2018/10/30
Sectoral innovation system  Traditional Chinese Medicine  Sub-sector  China  
A novel grey forecasting model with rolling mechanism using taguchi-based differential evolution algorithm to optimize the bicycle industry in China Journal article
Industrial Engineering and Management Systems, 2018,Volume: 17,Issue: 1,Page: 72-81
Authors:  Liu X.H.;  Wong S.F.
Favorite  |  View/Download:4/0  |  Submit date:2019/03/28
Differential Evolution Algorithm  Grey System  Parameter Optimization  Rolling Mechanism  Taguchi Method  
Sparse Bayesian Variable Selection with Correlation Prior for Forecasting Macroeconomic Variable using Highly Correlated Predictors Journal article
COMPUTATIONAL ECONOMICS, 2018,Volume: 51,Issue: 2,Page: 323-338
Authors:  Aijun Yang;  Ju Xiang;  Lianjie Shu;  Hongqiang Yang
Favorite  |  View/Download:10/0  |  Submit date:2018/10/30
Sparse Bayesian Variable Selection  Correlation Prior  Highly Correlated Predictors  Out-of-sample Forecasting