Some pioneering works have investigated embedding cryptographic properties in compressive sampling (CS) in a way similar to one-time pad symmetric cipher. This paper tackles the problem of constructing a CS-based symmetric cipher under the key reuse circumstance, i.e., the cipher is resistant to common attacks even when a fixed measurement matrix is used multiple times. To this end, we suggest a bi-level protected CS (BLP-CS) model which makes use of the advantage of measurement matrix construction without restricted isometry property (RIP). Specifically, two kinds of artificial basis mismatch techniques are investigated to construct key-related sparsifying bases. It is demonstrated that the encoding process of BLP-CS is simply a random linear projection, which is the same as the basic CS model. However, decoding the linear measurements requires knowledge of both the key-dependent sensing matrix and its sparsifying basis. The proposed model is exemplified by sampling images as a joint data acquisition and protection layer for resource-limited wireless sensors. Simulation results and numerical analyses have justified that the new model can be applied in circumstances where the measurement matrix can be reused.

%8 2016-09-01 %D 2016 %J IEEE Transactions on Multimedia %P 1720-1732 %V 18 %@ 15209210 %U http://repository.um.edu.mo/handle/10692/7769 %W UM