UM  > 科技學院  > 數學系
On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices
Li W.1; Vong S.-W.2; Peng X.-F.1
2014
Source PublicationApplied Numerical Mathematics
ISSN01689274
Volume83Pages:38-50
Abstract

In this paper, we give some structured perturbation bounds for generalized saddle point matrices and Hermitian block tridiagonal matrices. Our bounds improve some existing ones. In particular, the proposed bounds reveal the sensitivity of the eigenvalues with respect to perturbations of different blocks. Numerical examples confirm the theoretical results. © 2014 IMACS.

KeywordEigenvalue Perturbation Hermitian Block Tridiagonal Matrices Saddle Point Matrices Weyl's Bound
DOIhttp://doi.org/10.1016/j.apnum.2014.04.010
URLView the original
Indexed BySCI
Language英语
WOS Research AreaMathematics
WOS SubjectMathematics, Applied
WOS IDWOS:000338486200004
Fulltext Access
Citation statistics
Cited Times [WOS]:2   [WOS Record]     [Related Records in WOS]
Document TypeJournal article
CollectionDEPARTMENT OF MATHEMATICS
Corresponding AuthorLi W.; Vong S.-W.; Peng X.-F.
Affiliation1.South China Normal University
2.Universidade de Macau
Recommended Citation
GB/T 7714
Li W.,Vong S.-W.,Peng X.-F.. On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices[J]. Applied Numerical Mathematics,2014,83:38-50.
APA Li W.,Vong S.-W.,&Peng X.-F..(2014).On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices.Applied Numerical Mathematics,83,38-50.
MLA Li W.,et al."On eigenvalue perturbation bounds for Hermitian block tridiagonal matrices".Applied Numerical Mathematics 83(2014):38-50.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Li W.]'s Articles
[Vong S.-W.]'s Articles
[Peng X.-F.]'s Articles
Baidu academic
Similar articles in Baidu academic
[Li W.]'s Articles
[Vong S.-W.]'s Articles
[Peng X.-F.]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Li W.]'s Articles
[Vong S.-W.]'s Articles
[Peng X.-F.]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.