UM
Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection
Yuan H.2; Li J.2; Lai L.L.2; Tang Y.Y.3
2019-05-01
Source PublicationPattern Recognition
ISSN00313203
Volume89Pages:119-133
AbstractUnsupervised feature selection is a challenging task to gain relevant features for improving learning performance due to lack of the label information. Traditional unsupervised feature selection methods are often vector-based, which may ignore the location information of original matrix element. In this paper, we propose a joint sparse matrix regression and nonnegative spectral analysis model for two-dimensional unsupervised feature selection. To obtain proper label information under unsupervised condition, we adopt a nonnegative spectral clustering technique to yield the clustering labels as the pseudo class labels. To directly select the relevant feature on matrix data, we construct a regression relationship between matrix data and the pseudo class labels by deploying left and right regression matrices. Our proposed method can integrate the merits of both sparse matrix regression and nonnegative spectral clustering for feature selection. An efficient optimization algorithm is designed to solve our proposed optimization problem. Extensive experimental results on clustering and classification demonstrate the effectiveness of our proposed method.
KeywordNonnegative spectral analysis Sparse matrix regression Two-dimensional feature selection Unsupervised learning
DOI10.1016/j.patcog.2019.01.014
URLView the original
Language英語
全文获取链接
引用统计
被引频次[WOS]:2   [WOS记录]     [WOS相关记录]
Document TypeJournal article
专题University of Macau
Affiliation1.City University of Hong Kong
2.Guangdong University of Technology
3.Universidade de Macau
推荐引用方式
GB/T 7714
Yuan H.,Li J.,Lai L.L.,et al. Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection[J]. Pattern Recognition,2019,89:119-133.
APA Yuan H.,Li J.,Lai L.L.,&Tang Y.Y..(2019).Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection.Pattern Recognition,89,119-133.
MLA Yuan H.,et al."Joint sparse matrix regression and nonnegative spectral analysis for two-dimensional unsupervised feature selection".Pattern Recognition 89(2019):119-133.
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
Google Scholar
中相似的文章 Google Scholar
[Yuan H.]的文章
[Li J.]的文章
[Lai L.L.]的文章
Baidu academic
中相似的文章 Baidu academic
[Yuan H.]的文章
[Li J.]的文章
[Lai L.L.]的文章
Bing Scholar
中相似的文章 Bing Scholar
[Yuan H.]的文章
[Li J.]的文章
[Lai L.L.]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。